死锁问题探究(Android方向)

什么是死锁

说到死锁,大家可能都不陌生,每次遇到死锁,总会让计算机产生比较严重的后果,比如资源耗尽,界面无响应等。

死锁的精确定义:

集合中的每一个进程(或线程)都在等待只能由本集合中的其他进程(或线程)才能引发的事件,那么该组进程是死锁的。

对于这个定义大家可能有点迷惑,换一种通俗的说法就是:

死锁是指两个或两个以上的线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

经典的“哲学家进餐问题”可以帮助我们形象的理解死锁问题。

有五个哲学家,他们的生活方式是交替地进行思考和进餐,哲学家们共用一张圆桌,分别坐在周围的五张椅子上,在圆桌上有五个碗和五支筷子,平时哲学家进行思考,饥饿时便试图取其左、右最靠近他的筷子,只有在他拿到两支筷子时才能进餐,该哲学家进餐完毕后,放下左右两只筷子又继续思考。

当五个哲学家同时去取他左边的筷子,每人拿到一只筷子且不释放,即五个哲学家只得无限等待下去,这样就产生了死锁的问题。

在计算机中也可以用有向图来描述死锁问题,首先假定每个线程为有向图中的一个节点,申请锁的线程A为起点, 拥有锁的线程B为终点,这样就形成线程A到线程B的一条有向边,而众多的锁(边)和线程(点), 就构成了一个有向图

如果在有向图中形成一条环路,就会产生一个死锁,如上图所示。在很多计算机系统中,检测是否有死锁存在就是将问题抽象为寻找有向图中的环路。

常见的死锁的场景

下面分析几种常见的死锁形式:

锁顺序死锁

public class TestDeadLock {
    private final Object lockA = new Object();
    private final Object lockB = new Object();

    public void lockAtoB(){
        synchronized (lockA){
            synchronized (lockB){
                doSomething();
            }
        }
    }
    public void lockBtoA(){
        synchronized (lockB){
            synchronized (lockA){
                doSomething();
            }
        }
    }
    private void doSomething(){
        System.out.println("doSomething");
    }
}

上述代码中,如果一个线程调用lockAtoB(),另一个线程调用lockBtoA(),并且两个线程是交替执行,那么在程序运行期间是有一定几率产生死锁。而产生死锁的原因是:两个线程用不同的顺序去获取两个相同的锁,如果可以始终用相同的顺序,即每个线程都先获取lockA,然后再获取lockB,就不会出现循环的加锁依赖,也就不会产生死锁。

当然上面的代码只是一个示例,实际的代码中不会这么简单,而有些函数中,虽然看似都是以相同的顺序加锁,但是由于外部调用的不确定性,仍然会导致实际以不同的顺序加锁而产生死锁。

再看一个例子:

//仓库
public static interface IStore{
    public void inCome(int count);
    public void outCome(int count);
}
/**
 * 从 in 仓库 调用货物去 out仓库
 * @param from
 * @param to
 * @param count 调用货物量
 */
public void transportGoods(IStore from,IStore to,int count){
    synchronized (from){
        synchronized (to){
            from.outCome(count);//出仓库
            to.inCome(count);//入仓库
        }
    }
}

货运公司将货物从一个仓库转运到另一个仓库,转运前,需要同时获得两个仓库的锁,以确保两个仓库中的货物数量是以原子方式更新。看起来这个函数都是以相同的顺序获取锁,但这只是函数内部的顺序,而真正的执行顺序,取决于外部传入的对象。

transportGoods(storeA,storeB,100);
transportGoods(storeB,storeA,40);

如果用上述代码调用,在频繁的调用过程中,也很容易产生死锁。从上面的代码中可以看出,需要一个方法来确保在整个程序运行期间,锁都按照事先定义好的顺序来获取。这里提供一种方式:通过比较对象的hashcode值,来定义锁的获取顺序。下面来改造一下上述代码

private static final Object extraLock = new Object();
/**
 * 从 in 仓库 调用货物去 out仓库
 * @param from
 * @param to
 * @param count 调用货物量
 */
public void transportGoods(IStore from,IStore to,int count){
    int fromHashCode = System.identityHashCode(from);
    int toHashCode = System.identityHashCode(to);

    if(fromHashCode > toHashCode){
        synchronized (from){
            synchronized (to){
                transportGoodsInternal(from,to,count);
            }
        }
    }else if(fromHashCode < toHashCode){
        synchronized (to){
            synchronized (from){
                transportGoodsInternal(from,to,count);
            }
        }
    }else {//hash散列冲突,需要用新的一个锁来保证这种低概率情况下不出现问题
        synchronized (extraLock){
            synchronized (from){
                synchronized (to){
                    transportGoodsInternal(from,to,count);
                }
            }
        }
    }
}
public void transportGoodsInternal(IStore from,IStore to,int count){
    from.outCome(count);//出仓库
    to.inCome(count);//入仓库
}

上述代码不难理解,使用hashcode的大小来唯一确定锁的顺序,需要值得注意的是,使用identityHashCode

而不是对象自身的hashCode方法,这样可以降低用户重写hashcode后带来的冲突风险。具体可参考 System.identityHashCode(obj) 与 obj.hashcode()的区别。当然使用identityHashCode也不能完全避免冲突,当identityHashCode也冲突的时候,引入了额外的一个锁extraLock,这个锁是static的,也就是说,整个应用程序只有一个,虽然理论上整个程序都使用一个 extraLock可能会导致并发性能的下降,但是考虑实际情况下,identityHashCode冲突的可能性非常小,所以并发性能问题也将不是问题。

那么如果能从业务的层面找到IStore中唯一的,不可变的编码,例如,仓库在数据库中的唯一编码,就可以不使用hashcode了,也可以避免使用extraLock。当然这需要大家通过实际的业务逻辑来进行分析提取这个唯一编码。

需要注意的是,使用hashcode这种方式是兼容性最好,成本最低也最不容易出错的方式,如果使用自有编码,你需要确保编码的唯一性,不可变性,这要保证这一点很不容易。

多个对象协作发生的死锁

之前讨论的死锁发生在一个对象内部,这样的死锁问题,比较明显,也容易发现。当互相调用的类变为两个或者更多,而两个类中又分别有各自加锁同步的逻辑,这样的死锁隐藏在代码逻辑中,不容易发现,也不容易寻找。首先来看一个例子。

/**
 * 玩游戏者
 */
class Player {
    private SystemMonitor monitor;
    private int cardCount;//收集的卡片的数量

    public Player(SystemMonitor monitor) {
        this.monitor = monitor;
    }

    public synchronized int getCardCount() {
        return cardCount;
    }

    public synchronized void collectCard(int count){
        cardCount += count;
        if(cardCount >= 50){
            monitor.notifyComplete(this);
        }
    }
}

/**
 * 监控系统
 */
class SystemMonitor {
    private ArrayList<Player> playerArrayList;//所有玩家
    private ArrayList<Player> completePlayerArrayList = new ArrayList<>();//完成的玩家

    //通知监控系统完成
    public synchronized void notifyComplete(Player player){
        System.out.println("玩家完成收集");
        completePlayerArrayList.add(player);
    }
    //实时监控大家手中牌的数量
    public synchronized void monitorAllPlayer(){
        for (Player player : playerArrayList){
            System.out.println("玩家有"+ player.getCardCount() + "张牌");
        }
    }
}

Player代表玩家,玩家收集完成,50张牌后通知监控系统自己完成游戏,而监控系统通过monitorAllPlayer来实时监控玩家目前手中的牌的数量。不难理解,在Player和SystemMonitor的方法中加锁,是为了避免数据的不一致性。粗略看这一段代码时,没有任何方法会显式的获取两个锁。但是collectCard方法与monitorAllPlayer方法由于调用了外部类的方法,所以他们其实是会拥有两个锁的。假设这样一种情形,当一个玩家收集满50张牌,他通知监控系统他已完成收集,玩家先后获取了Player对象的锁与SystemMonitor对象的锁,而这个时候,监控系统正在扫描所有玩家,而监控系统会先获取自身的锁,然后再获取玩家的锁。这样就有可能出现在两个线程中获取锁顺序不一致的情况,因此就有可能产生死锁。

当一个对象的方法在持有锁期间调用外部方法,这时应该格外注意,因为无法显式判断外部方法是否有其他锁,而这样就有可能产生死锁。

针对上述描述,该如何避免死锁呢?

首先引入一个术语开放调用,即调用某个方法的时候,不需要持有锁,这种调用称为开放调用。通过尽可能地使用开放调用,更容易找出其他锁的路径,也更容易保证加锁的顺序,以此来避免死锁问题。

上述的代码很容易修改为开放调用,此时需要做的就是缩小锁的粒度,使得同步方法只用来保护真正需要保护的变量或者代码段。

public void collectCard(int count){
    boolean isComplete = false;
    synchronized (this){
       cardCount += count;
       if(cardCount >= 50){
           isComplete = true;
       }
    }
    if(isComplete){
        monitor.notifyComplete(this);
    }
}

//实时监控大家手中牌的数量
public void monitorAllPlayer(){
    ArrayList<Player> copy;
    synchronized (this){
        copy = new ArrayList<>(playerArrayList);
    }
    for (Player player : copy){
        System.out.println("玩家有"+ player.getCardCount() + "张牌");
    }
}

线程饥饿死锁

在线程池中,如果任务依赖于其他任务,就可能产生死锁。举一个简单的单线程Executor的例子,如果任务A已经在Executor中运行,而任务A又向相同的Executor中提交了一个任务B,通常情况下,这样会产生死锁。任务B在队列中一直等待任务A完成,而任务A由于是在单线程Executor中,所以又在等待任务B执行完成,这样就造成了死锁。在更大的线程池中,考虑极限情况,如果所有正在执行任务的线程,都在等待之前提交到线程池中排队的任务,这样线程会永远等待下去,这种问题称为线程饥饿死锁。下面的代码展示了线程饥饿死锁。

private ThreadPoolExecutor executor = new ThreadPoolExecutor(5,5,0,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());;

@Test
public void test() throws ExecutionException, InterruptedException {
    int count = 0;
    while (true) {
        System.out.println("开始 = " + (count));
        start();
        System.out.println("结束 = " + (count++));
        Thread.sleep(10);
    }
}

public void start() throws ExecutionException, InterruptedException {
    Callable<String> second = new Callable<String>() {
        @Override
        public String call() throws Exception {
            Thread.sleep(100);
            return "second callable";
        }
    };

    Callable<String> first = new Callable<String>() {
        @Override
        public String call() throws Exception {
            Thread.sleep(10);
            Future<String> secondFuture = executor.submit(second);
            String secondResult = secondFuture.get();
            Thread.sleep(10);
            return "first callable. second result = " + secondResult;
        }
    };

    List<Future<String>> futures = new ArrayList<>();
    for(int i = 0; i< 5; i++){
        System.out.println("submit : " + i);
        Future<String> firstFuture = executor.submit(first);
        futures.add(firstFuture);
    }
    for(int i = 0; i < 5; i++){
        String firstrResult = futures.get(i).get();
        System.out.println(firstrResult + ":" + i);
    }
}

Android系统处理死锁方案

Android系统的Framework层有一个WatchDog用于定期检测关键系统服务是否发生死锁。WatchDog功能主要是分析系统核心服务和重要线程是否处于Blocked状态。

下面我们以Android 9.0为例分析WatchDog的实现原理。通过分析源码,也可以给自己实现一套死锁监控提供一些思路。源码见:WatchDog

看源码之前,可以先自己思考下,如果让我们去实现一个WatchDog,我们会如何设计。其实原理倒是不难,无外乎需要做两件事情。

  1. 定期轮询检测系统中核心的线程的状态
  2. 检测到卡死后,将相关对应的线程,进程及其他软硬件信息输出

其实WatchDog也是这么设计的。WatchDog是继承自Thread,那么我们分析它的工作流程也就从run方法开始吧。

为了方便代码展示,下面源码只保留一些关键代码。run方法是整个检测的核心,我在代码片段里面标注了“代码关键点*”字样,方便在文中引用定位。

    public void run() {
        boolean waitedHalf = false;
        while (true) {//我们要在Android系统运行的整个过程中监控,当然我们需要一个死循环
            final List<HandlerChecker> blockedCheckers;
            final String subject;
            final boolean allowRestart;
            int debuggerWasConnected = 0;
            synchronized (this) {
                long timeout = CHECK_INTERVAL;
                     //代码关键点1
                for (int i=0; i<mHandlerCheckers.size(); i++) {
                    HandlerChecker hc = mHandlerCheckers.get(i);
                    hc.scheduleCheckLocked();
                }
                ....
                                //代码关键点2
                long start = SystemClock.uptimeMillis();
                while (timeout > 0) {
                ...
                    try {
                        wait(timeout);
                    } catch (InterruptedException e) {
                        Log.wtf(TAG, e);
                    }
                ...
                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
                }
                ...
                                //代码关键点3
                boolean fdLimitTriggered = false;
                if (mOpenFdMonitor != null) {
                    fdLimitTriggered = mOpenFdMonitor.monitor();
                }
                             //代码关键点4
                if (!fdLimitTriggered) {
                    final int waitState = evaluateCheckerCompletionLocked();
                    if (waitState == COMPLETED) {
                        waitedHalf = false;
                        continue;
                    } else if (waitState == WAITING) {
                        continue;
                    } else if (waitState == WAITED_HALF) {
                        if (!waitedHalf) {
                            ArrayList<Integer> pids = new ArrayList<Integer>();
                            pids.add(Process.myPid());
                            ActivityManagerService.dumpStackTraces(true, pids, null, null,
                                getInterestingNativePids());
                            waitedHalf = true;
                        }
                        continue;
                    }
                    blockedCheckers = getBlockedCheckersLocked();
                    subject = describeCheckersLocked(blockedCheckers);
                } else {
                    blockedCheckers = Collections.emptyList();
                    subject = "Open FD high water mark reached";
                }
                allowRestart = mAllowRestart;
            }

                        //代码关键点5
                        //代码运行到这里,说明系统已经卡死

            final File stack = ActivityManagerService.dumpStackTraces(
                    !waitedHalf, pids, null, null, getInterestingNativePids());
            doSysRq('w');
            doSysRq('l');
            ... 
            IActivityController controller;
            if (controller != null) {

                        ...
               int res =controller.systemNotResponding(subject);
            if (res >= 0) {
                ...
               continue;
             } 
            }
                        // 代码关键点6
            if (Debug.isDebuggerConnected()) {
                debuggerWasConnected = 2;
            }
            if (debuggerWasConnected >= 2) {
            } else if (debuggerWasConnected > 0) {
            } else if (!allowRestart) {
            } else {//只有这种情况下,杀死system_server
              ...
           //代码关键点6
                Process.killProcess(Process.myPid());
                System.exit(10);
            }
            waitedHalf = false;
        }
    }

整个run方法是一个死循环,这也是可以理解的,毕竟WatchDog需要在Android系统的整个运行期间进行监测。

在“代码关键点1”这里,通过遍历所有需要检测的线程,需要检测的线程集合是在WatchDog的构造函数中初始化的。

    private Watchdog() {
        super("watchdog");
      ... 
        mMonitorChecker = new HandlerChecker(FgThread.getHandler(),
                "foreground thread", DEFAULT_TIMEOUT);
        mHandlerCheckers.add(mMonitorChecker);
        mHandlerCheckers.add(new HandlerChecker(new Handler(Looper.getMainLooper()),
                "main thread", DEFAULT_TIMEOUT));
        mHandlerCheckers.add(new HandlerChecker(UiThread.getHandler(),
                "ui thread", DEFAULT_TIMEOUT));
        mHandlerCheckers.add(new HandlerChecker(IoThread.getHandler(),
                "i/o thread", DEFAULT_TIMEOUT));
        mHandlerCheckers.add(new HandlerChecker(DisplayThread.getHandler(),
                "display thread", DEFAULT_TIMEOUT));
        addMonitor(new BinderThreadMonitor());
        mOpenFdMonitor = OpenFdMonitor.create();//这个monitor有额外作用,后面我们会有提到
      ...
    }

WatchDog构造函数中,初始化了我们要监控的系统线程。包含FgThread,主线程,UiThread,IoThread,DisplayThread,Binder通信线程。(需要着重说明的是监控FgThread的mMonitorChecker通过向外部暴露接口,通过调用WatchDog的addMonitor方法,来监控所有实现了Monitor接口的服务。)

    public void addMonitor(Monitor monitor) {
                    ....
            mMonitorChecker.addMonitor(monitor);
        }
    }

代码中的HandlerChecker便是今天的主角之一,它的主要作用就是用来检测线程是否卡死。在“代码关键点1”的循环中,调用了scheduleCheckLocked,而这个方法是HandlerChecker的核心。下面HandlerChecker代码片段,这个方法通过postAtFrontOfQueue向被监控线程的Handler消息队列的头部插入当前HandlerChecker,如果被监控线程消息执行正常,则会回调HandlerChecker的run方法,在run方法里面遍历所有Monitor对象(实现Monitor接口的服务很多,包含AMS,WMS,IMS等),执行monitor方法,如果服务正常,最后我们便会将mCompleted置为true。这个mCompleted变量就是后续WatchDog用来判断对应线程是否卡死依据。

public final class HandlerChecker implements Runnable {
        ...
        private final Handler mHandler;
        private final ArrayList<Monitor> mMonitors = new ArrayList<Monitor>();
        private boolean mCompleted;
        ...
        public void scheduleCheckLocked() {
            if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {//特殊的条件,需要注意,下面有解释
                mCompleted = true;
                return;
            }
            if (!mCompleted) {
                return;
            }
            mCompleted = false;
            mCurrentMonitor = null;
            mStartTime = SystemClock.uptimeMillis();
            mHandler.postAtFrontOfQueue(this);
        }
        ...
        @Override
        public void run() {
            final int size = mMonitors.size();
            for (int i = 0 ; i < size ; i++) {
                synchronized (Watchdog.this) {
                    mCurrentMonitor = mMonitors.get(i);
                }
                mCurrentMonitor.monitor();
            }
            synchronized (Watchdog.this) {
                mCompleted = true;
                mCurrentMonitor = null;
            }
        }
    }

scheduleCheckLocked方法中有一个代码引起了我们的注意,如果mHandler.getLooper().getQueue().isPolling()为true,那么直接将mCompleted置为true,这又是什么原理。通过查阅MessageQueue源码,里面的一段注释解决了我们的迷惑。

Returns whether this looper’s thread is currently polling for more work .This is a good signal that the loop is still alive rather than being stuck handling a callback

这段话含义就是isPolling表示正在从队列中取消息,为true则代表Looper依然运行良好,通过这个标记就不需要等待回调来得知状态,这样效率更高。

了解了检测卡死的原理,那我们继续回到WatchDog的run方法,来看“代码关键点2”。通过wait方法实现了每30s检测一次的效果,这里看到了Google工程师的一个小技巧,由于wait的timeout时间可能没那么准确,为了保证至少等待30s,使用了一个while循环,并且循环完毕通过timeout = CHECK_INTERVAL – (SystemClock.uptimeMillis() – start);来保证时间够30s。

“代码关键点3”中使用了OpenFdMonitor,这个类的主要作用是为了判断剩余可用文件句柄的数量,大家知道Linux中打开文件都需要分配文件句柄,系统的文件句柄数量是有限制的。当然这个OpenFdMonitor只在编译模式为userdebug 和 eng的Android编译版本起作用,这也是为了方便开发人员调试信息。

“代码关键点4”中evaluateCheckerCompletionLocked便是用来评估当前所有线程的卡死情况

private int evaluateCheckerCompletionLocked() {
    int state = COMPLETED;
    for (int i=0; i<mHandlerCheckers.size(); i++) {
        HandlerChecker hc = mHandlerCheckers.get(i);
        state = Math.max(state, hc.getCompletionStateLocked());
    }
    return state;
}

代码获取了当前线程中状态值最大的state;state的定义如下

COMPLETED = 0;已完成,不存在卡死情况

WAITING = 1; 等待时间小于DEFAULT_TIMEOUT的一半,即<30s

WAITED_HALF = 2; 等待时间超过DEFAULT_TIMEOUT的一半,即>=30s

OVERDUE = 3;等待时间大于等于DEFAULT_TIMEOUT ,即 >=60s

如果有线程状态已经是OVERDUE,那么说明被监控的线程有卡死情况。我们的流程也来到了“代码关键点5”。这里就比较好理解了,通过dumpStackTraces输出kernel栈信息,通过doSysRq触发系统dump所有阻塞线程堆栈。这样所有相关的信息就保存好了。

“ 代码关键点6”中,以下几种情况,即使触发了WatchDog,也不杀死系统进程。

  • debuggerWasConnected>=0 debuggerWasConnected>=2 代表debugger正在连接调试中
  • allowRestart设置为true,是通过adb logcat am hang命令设置的

最后通过下面两行代码将SystemServer进程杀死,当system_server被杀后,就会导致Zygote进程自杀,进而做到Zygote进程的重启。而这个现象也就是我们平常看到了手机死机了,然后又自动重启的现象。

Process.killProcess(Process.myPid()); System.exit(10);

Android开发过程中死锁分析方法

分析完系统如何处理死锁情况后,我们再来看看在Android开发中最容易碰到的死锁表现形式ANR。当然产生ANR的原因很多,死锁只是其中一种。如果ANR发生,对应的应用会收到SIGQUIT异常终止信号,dalvik虚拟机就会自动在/data/anr/目录下生成trace.txt(Android8.1以后文件名不是这个了)文件,这个文件记录了在发生ANR时刻系统各个线程的执行状态,trace文件中记录的线程执行状态详细描述了各个线程加锁等待的情况。通过分析,就可以相对容易的找到发生死锁所在的线程及代码。

主线程死锁导致的问题,可以通过ANR的trace文件分析,如果是非主线程呢,这种死锁一般很难察觉,但是这种死锁有时候也会造成很严重的后果,因为线程可能一直在占用某些资源,比如端口,数据库连接,文件句柄等。对于普通的java程序,JVM提供了jstack工具,可以将线程信息dump出来进行分析。由于Android系统中没有提供类似jstack的工具,这里笔者给大家提供两种方法来检查是否有线程发生死锁.

  • 借助Android Studio的调试工具

首先通过工具栏Run->Attach to Process 或者快捷入口 ,将App的进程attach进去。 然后在Android Debugger窗口中,找到Get Thread Dump按钮,点击后,稍等片刻,Androd Studio就会将对应调试进程的线程堆栈信息dump出来。 下图就是得到的线程信息,这样就可以分析线程中的死锁了。

  • 借助ANR机制

Android应用发生ANR时,系统会发出SIGQUIT信号给发生ANR的进程。利用系统这个机制,当监控线程发现被监控线程卡死时,主动向系统发送SIGQUIT信号,等待/data/anr/traces.txt文件生成。这样可以得到一个和ANR日志相同的线程堆栈信息,这样分析死锁的问题就和之前分析ANR那个trace文件就一样了。

下面我举一个具体例子来看看如何借助发送SIGQUIT信号来生成trace文件。

首先我们通过ps命令拿到我们进程的进程id

adb shell ps | grep com.sohu.sohuvideo

这取主进程 id : 22841,执行如下命令

adb shell run-as com.sohu.sohuvideo kill -3 22841

紧接着会在logcat中输出日志 com.sohu.sohuvideo I/.sohu.sohuvide: Wrote stack traces to ‘[tombstoned]’,这时我们的trace文件便已经生成好了(这里需要注意Android8.1之前输出的日志为 Wrote stack traces to traces.txt)。

在这里我们需要注意,run-as 命令需要在debug包下面才管用,如果是Release包则不行。

如果是Android8.1之前的系统那么我们就可以愉快的通过 adb pull /data/anr/traces.txt 命令直接将文件拿到了,但是8.1之后trace文件便没有权限直接可以拿到了。这里我们可能想到了用adb shell bugreport命令来导出trace文件,但是当我们兴奋的打开bugreport文件,找到anr文件夹,却发现里面只有app真正发生anr时候的trace文件,却没有我们刚刚用命令执行完毕后生成的文件。通过adb shell直接进入手机目录查看发现,该目录下有我们刚刚生成的文件dumptrace_YbVvLP,只不过bugreport没有将其导出。

最后经过一番探索终于找到一个途径,这样绕过了系统的权限,终于将我们自己生产的trace文件导出了。

adb shell cat /data/anr/dumptrace_YbVvLP > ~/Desktop/dump

结束语

死锁问题是一个老大难问题,而且只要有死锁,一般都会引起严重的后果,我们需要不断强化自己的编程能力,写代码的过程中遇到多线程加锁同步的问题,多思考是否会产生死锁,只有多思考,多实践,才能将死锁问题发生的频率降到最低。

参考资料

  1. 《手Q Android线程死锁监控与自动化分析实践》
  2. System.identityHashCode(obj) 与 obj.hashcode()的区别

发表评论

电子邮件地址不会被公开。 必填项已用*标注